首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1010篇
  免费   71篇
  2023年   3篇
  2022年   2篇
  2021年   23篇
  2020年   12篇
  2019年   14篇
  2018年   29篇
  2017年   14篇
  2016年   28篇
  2015年   34篇
  2014年   52篇
  2013年   88篇
  2012年   78篇
  2011年   79篇
  2010年   42篇
  2009年   34篇
  2008年   75篇
  2007年   66篇
  2006年   65篇
  2005年   65篇
  2004年   44篇
  2003年   40篇
  2002年   37篇
  2001年   13篇
  2000年   15篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   19篇
  1995年   9篇
  1994年   6篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1081条查询结果,搜索用时 617 毫秒
41.
We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2Pmp) for the enrichment of protein tyrosine phosphatases (PTPs). We found that different F2Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies.  相似文献   
42.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   
43.
A rat pheochromocytoma cell line (PC12), when transfected with beta1,4-N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulted in the suppression of neurite outgrowth induced by costimulation of epidermal growth factor (EGF) and integrins. The neurite outgrowth was restored by the overexpression of a constitutively activated mitogen- or extracellular signal-regulated kinase kinase-1 (MEK-1). Consistent with this, the EGF receptor (EGFR)-mediated ERK activation was blocked in GnT-III transfectants. Conversely, the overexpression of dominant negative MEK-1 or treatment with PD98059, a specific inhibitor of MEK-1, inhibited neurite outgrowth in controls transfected with mock. Furthermore GnT-III activity is required for these inhibitions, because the overexpression of a dominant negative GnT-III mutant (D321A) failed to reduce neurite outgrowth and EGFR-mediated ERK activation. Lectin blot analysis confirmed that EGFR from wild-type GnT-III transfectants had been modified by bisecting GlcNAc in its N-glycan structures. This modification led to a significant decrease in EGF binding and EGFR autophosphorylation. Collectively, the results constitute a comprehensive body of evidence to show clearly that the overexpression of GnT-III prevents neurite outgrowth induced by costimulation of EGF and integrins through the Ras/MAPK activation pathway and indicates that GnT-III may be an important regulator for cell differentiation in neural tissues.  相似文献   
44.
45.
Two genes encoding EngB endoglucanase and mini-CbpA1 scaffolding protein of Clostridium cellulovorans were constructed and coexpressed in Bacillus subtilis WB800. The resulting minicellulosomes were isolated by gel filtration chromatography and characterized. Biochemical and immunological evidence indicated that fraction II contained minicellulosomes consisting of mini-CbpA1 and EngB. The in vivo synthesis of minicellulosomes suggests that it will be possible in the future to insert into B. subtilis cellulosomal genes that will allow growth on cellulosic materials and the production of various designer cellulosomes with specific functions.  相似文献   
46.
The DNA binding orientation and dynamic behavior of Cu(II) complexes of 1,4,7-triazacyclononane ([9]aneN(3)), 1, and an acridine conjugate, 2, were investigated by DNA fiber EPR (EPR=electron paramagnetic resonance) spectroscopy. Crystal and molecular structure of 2 were determined by X-ray diffraction. It has been shown that 1 binds to DNA in two different modes at room temperature; one species is rapidly rotating and the other is immobilized randomly on the DNA. The introduction of acridine to [9]aneN(3) fixed the [Cu([9]aneN(3))](2+) moiety of 2 in two different environments on the DNA: the g(mid R:mid R:) axis of one species (g( parallel)=2.26) is aligned perpendicularly to the DNA fiber axis whereas that of the other (g( parallel)=2.24) aligns<90 degrees with the DNA fiber axis. The different DNA binding structures of 1 and 2 are reflected also in their different efficiencies of DNA cleavage; 2 was found to be more effective both in oxidative and hydrolytic cleavage reactions.  相似文献   
47.
It has been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in preventing neuronal cell death and is also a potent vasodilator. Cerebral hypotension and hypoperfusion during cerebral ischemia and neurodegenerative diseases are well known as some of the negative factors which aggravate neuronal cell death. Nevertheless, the effect of PACAP on the cerebral circulation was not understood well. Therefore, in the present study, we determined the mean arterial blood pressure (MBP), regional cerebral blood flow (rCBF) and cerebral oxygen content (pO2) in mice, and estimated the therapeutically useful doses of PACAP. Under barbiturate anesthesia, polyethylene tubes were inserted into mice to monitor MBP and to administer PACAP (5 x 10(-13)-5 x 10(-8) mol/kg) or vasoactive intestinal peptide (VIP; 5 x 10(-12) and 5 x 10(-9) mol/kg). Then, MBP, rCBF and cerebral pO2 were simultaneously measured in the mice. PACAP (5 x 10(-10)-5 x 10(-9) mol/kg) injections transiently decreased MBP, and cerebral pO2. PACAP (5 x 10(-8) mol/kg) injections produced a long-lasting potent decline of MBP, rCBF and cerebral pO2. Therefore, PACAP should be applied at low doses which do not influence the MBP and cerebral circulation to determine the therapeutically useful doses of PACAP for neuroprotection.  相似文献   
48.
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.  相似文献   
49.
We identified a novel human chondroitin N-acetylgalactosaminyltransferase, designated chondroitin GalNAcT-2 after a BLAST analysis of the GenBank(TM) data base using the sequence of a previously described human chondroitin N-acetylgalactosaminyltransferase (chondroitin GalNAcT-1) as a probe. The new cDNA sequence contained an open reading frame encoding a protein of 542 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 60% identity to that of human chondroitin GalNAcT-1. Like chondroitin GalNAcT-1, the expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which not only transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUA beta 1-3Gal beta 1-O-C(2)H(4)NHCbz, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein-linkage region of chondroitin sulfate. In contrast, the tetrasaccharide serine (GlcUA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser) derived from the linkage region, which is an inert acceptor substrate for chondroitin GalNAcT-1, served as an acceptor substrate. The coding region of this enzyme was divided into seven discrete exons, which is similar to the genomic organization of the chondroitin GalNAcT-1 gene, and was localized to chromosome 10q11.22. Northern blot analysis revealed that the chondroitin GalNAcT-2 gene exhibited a ubiquitous but differing expression in human tissues, and the expression pattern differed from that of chondroitin GalNAcT-1. Thus, we demonstrated redundancy in the chondroitin GalNAc transferases involved in the biosynthetic initiation and elongation of chondroitin sulfate, which is important for understanding the biosynthetic mechanisms leading to the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate and heparin/heparan sulfate chains.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号